Environmental Fate and Degradation of Glyphosate in Soil

Motharasan Manogaran, Mohd Yunus Shukor, Nur Adeela Yasid, Wan Lutfi Wan Johari, Siti Aqlima Ahmad


Commercialisation of glyphosate [N-(phosphonomethyl)glycine] in the early 1970s has left a big leap in the agriculture sector. This is due to its effectiveness in controlling a wide range of weeds. Glyphosate translocates well in plants. In addition, with added surfactant in its formulae, it can also be used in wet conditions. Its ability to kill weeds by targeting the 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) makes no competing herbicide analogs in its class. Considering its cost effectiveness, only small amount is needed to cover a large sector in agricultural land. The most important aspect in the success of glyphosate is the introduction of transgenic, glyphosate-resistant crops in 1996. However, glyphosate is not an environmental friendly herbicide. This systematic herbicide has raised environmental concern due to its excessive use in agriculture. Studies have shown traces of glyphosate found in drinking water. Meanwhile, it's rapid binding on soil particles possesses adverse effect to soil organisms. Glyphosate degradation in soil usually carried out by microbial activity. Microbes’ capable utilising glyphosate mainly as phosphate source. However, the activity of C-P lyase in breaking down glyphosate have not clearly understood. This review presents a collective summary on the understanding on how glyphosate works and its environmental fate.

Full Text:



Arif, N. M., Ahmad, S. A., Syed, M. A., & Shukor, M.Y. (2013). Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP. Journal of Basic Microbiology, 53(1), 9-19.

Ayoola, S. O. (2008). Toxicity of glyphosate herbicide on Nile tilapia (Oreochromis niloticus) juvenile. African Journal of Agricultural Research, 3(12), 825–834.

Balthazor, T. M., & Hallas, L. E. (1986). Glyphosate-degrading microorganisms from industrial activated sludge. Applied and Environmental Microbiology, 51(2), 432–434.

Bazot, S., & Lebeau, T. (2008). Simultaneous mineralization of glyphosate and diuron by a consortium of three bacteria as free-and/or immobilized-cells formulations. Applied Microbiology and Biotechnology, 77(6), 1351–1358.

Benachour, N., & Séralini, G.-E. (2009). Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chemical Research in Toxicology, 22(1), 97–105.

Borggaard, O. K., & Gimsing, A. L. (2008). Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Management Science, 64(4), 441–456.

Carlisle, S. M., & Trevors, J. T. (1988). Glyphosate in the environment. Water, Air, and Soil Pollution, 39(3-4), 409–420.

Cedergreen, N., & Streibig, J. C. (2005). The toxicity of herbicides to non-target aquatic plants and algae: Assessment of predictive factors and hazard. Pest Management Science, 61(12), 1152–1160.

Chen, Y., Wu, F., Lin, Y., Deng, N., Bazhin, N., & Glebov, E. (2007). Photodegradation of glyphosate in the ferrioxalate system. Journal of Hazardous Materials, 148(1–2), 360–365.

Coupland, D., & Caseley, J. C. (1979). Presence of 14c activity in root exudates and guttation fluid from Agropyron Repens treated with 14c-labelled glyphosate. New Phytologist, 83(1), 17–22.

Della-Cioppa, G., Bauer, S. C., Klein, B. K., Shah, D. M., Fraley, R. T., & Kishore, G. M. (1986). Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proceedings of the National Academy of Sciences of the United States of America, 83(18), 6873–6877.

Dick, R. E., & Quinn, J. P. (1995). Glyphosate-degrading isolates from environmental samples: Occurrence and pathways of degradation. Applied Microbiology and Biotechnology, 43(3), 545–550.

Duke, S. O., & Powles, S. B. (2008). Glyphosate: A once-in-a-century herbicide. Pest Management Science, 64(4), 319–325.

Dyhrman, S. T., Ammerman, J. W., & van, M. (2007). Microbes and the marine phosphorus cycle. Oceanography, 20(SPL.ISS. 2), 110–116.

Fitzgibbon, J., & Braymer, H. D. (1988). Phosphate starvation induces uptake of glyphosate by Pseudomonas sp. strain PG2982. Applied and Environmental Microbiology, 54(7), 1886–1888.

Franz, J. E., Mao, M. K., & Sikorski, J. A. (1997). Glyphosate: A unique global herbicide. Washington DC : American Chemical Society.

Folmar, L. C., Sanders, H. O., & Julin, A. M. (1979). Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Archives of Environmental Contamination and Toxicology, 8(3), 269–278.

Funke, T., Han, H., Healy-Fried, M. L., Fischer, M., & Schönbrunn, E. (2006). Molecular basis for the herbicide resistance of Roundup Ready crops. Proceedings of the National Academy of Sciences, 103(35), 13010–13015.

Gardner, S. C. (University of W., Grue, C. E., Grassley, J. M., Lenz, L. A., Lindenauer, J. M., & Seeley, M. E. (1997). Single species algal (Ankistrodesmus) toxicity tests with Rodeo and Garlon 3A. Bulletin of Environmental Contamination and Toxicology (USA).

Gibson, F. (1964). Chorismic acid: purification and some chemical and physical studies. Biochemical Journal, 90(2), 256–261.

Gimsing, A. L., Borggaard, O. K., & Sestoft, P. (2004). Modeling the kinetics of the competitive adsorption and desorption of glyphosate and phosphate on goethite and gibbsite and in soils. Environmental Science and Technology, 38(6), 1718–1722.

Goldsborough, L. G., & Brown, D. J. (1988). Effect of glyphosate (Roundup® formulation) on periphytic algal photosynthesis. Bulletin of Environmental Contamination and Toxicology, 41(2), 253–260.

Hadi, F., Mousavi, A., Noghabi, K. A., Tabar, H. G., & Salmanian, A. H. (2013). New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity. Journal of Environmental Science and Health, 48(3), 208–213.

Halter, S. (2007). A brief history of Roundup. Proceedings of the first international symposium on glyphosate. Agronomical sciences college of the University of the State of Sao Paulo, Sao Paulo, Brazil, October 15 – 19.

Hance, R. J. (1976). Adsorption of glyphosate by soils. Pesticide Science, 7(4), 363–366.

Hanke, I., Wittmer, I., Bischofberger, S., Stamm, C., & Singer, H. (2010). Relevance of urban glyphosate use for surface water quality. Chemosphere, 81(3), 422–429.

Herrmann, K. M. (1995). The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiology, 107(1), 7–12.

Hui, L., Sheng, G., Johnston, C. T., & Boyd, S. A. (2003). Sorption and desorption of pesticides by clay minerals and humic acid-clay complexes. Soil Science Society of America Journal 1(67), 122-131.

Inoue, M. H., Oliveira, R. S., Regitano, J. B., Tormena, C. A., Tornisielo, V. L., & Constantin, J. (2003). Criteria for evaluation of the leaching potential of herbicides used in Paraná. Planta Daninha, 21(2), 313–323.

Jacob, G. S., Garbow, J. R., Hallas, L. E., Kimack, N. M., Kishore, G. M., & Schaefer, J. (1988). Metabolism of glyphosate in Pseudomonas sp. strain LBr. Applied and Environmental Microbiology, 54(12), 2953–2958.

Jayasumana, C., Gunatilake, S., & Senanayake, P. (2014). Glyphosate, Hard Water and Nephrotoxic Metals: Are They the Culprits Behind the Epidemic of Chronic Kidney Disease of Unknown Etiology in Sri Lanka? International Journal of Environmental Research and Public Health, 11(2), 2125–2147.

Jorgenson, J. L. (2001). Aldrin and dieldrin: a review of research on their production, environmental

deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States.

Environmental Health Perspectives, 109(1), 113–139.

Kah, M., Beulke, S., & Brown, C. D. (2007). Factors influencing degradation of pesticides in soil. Journal of Agricultural and Food Chemistry, 55(11), 4487–4492.

Kare, L. H., & Hakon 0. F. (1986). Photodegradation of the herbicides glyphosate in water. Bulletin of Environmental Contamination and Toxicology, 36, 723–729. (mana ada journal springer?)

Kertesz, M., Elgorriaga, A., & Amrhein, N. (1991). Evidence for two distinct phosphonate-degrading enzymes (C-P lyases) in Arthrobacter sp. GLP-1. Biodegradation, 2(1), 53–59.

Kishore, G. M., & Jacob, G. S. (1987). Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate. The Journal of Biological Chemistry, 262(25), 12164–12168.

Kristoffersen, P., Rask, A. M., Grundy, A. C., Franzen, I., Kempenaar, C., Raisio, J., Schroeder, H., Spijker, J., Verschwele, A. and Zarina, L. (2008). A review of pesticide policies and regulations for urban amenity areas in seven European countries. Weed Research, 48(3), 201–214.

Krzyśko-Łupicka, T., & Orlik, A. (1997). The use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere, 34(12), 2601–2605.

Leong, K. H., Tan, L. L. B., & Mustafa, A. M. (2007). Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere, 66(6), 1153–1159.

Lerbs, W., Stock, M., & Parthier, B. (1990). Physiological aspects of glyphosate degradation in Alcaligenes spec. strain GL. Archives of Microbiology, 153(2), 146–150.

Liu, C. M., McLean, P. A., Sookdeo, C. C., & Cannon, F. C. (1991). Degradation of the Herbicide Glyphosate by Members of the Family Rhizobiaceae. Applied and Environmental Microbiology, 57(6), 1799–1804.

Malik, J., Barry, G., & Kishore, G. (1989). The herbicide glyphosate. BioFactors (Oxford, England), 2(1), 17–25.

Mann, R. M., & Bidwell, J. R. (1999). The toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs. Archives of Environmental Contamination and Toxicology, 36(2), 193–199.

Maule, A., & Wright, S. J. L. (1984). Herbicide effects on the population growth of some green algae and cyanobacteria. Journal of Applied Bacteriology, 57(2), 369–379.

McAuliffe, K. S., Hallas, L. E., & Kulpa, C. F. (1990). Glyphosate degradation by Agrobacterium radiobacter isolated from activated sludge. Journal of Industrial Microbiology, 6(3), 219–221.

Mesnage, R., Bernay, B., & Séralini, G. E. (2013). Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology, 313(2), 122–128.

Mesnage, R., Defarge, N., Spiroux de Vendômois, J., & Séralini, G. E. (2014). Major pesticides are more toxic to human cells than their declared active principles. BioMed research international, 2014. e179691.

Molin, W. T., & Hirase, K. (2005). Effects of surfactants and simulated rainfall on the efficacy of the Engame formulation of glyphosate in johnson grass, prickly sida and yellow nutsedge. Weed Biology and Management, 5(3), 123–127.

Moneke, A. N., Okpala, G. N., & Anyanwu, C. U. (2010). Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields. African Journal of Biotechnology, 9(26), 4067–4074.

Morgan, M. J., & Kiceniuk, J. W. (1992). Response of rainbow trout to a two month exposure to Vision®, a glyphosate herbicide. Bulletin of Environmental Contamination and Toxicology, 48(5), 772–780.

Nandula, V. K. (2010). Glyphosate Resistance in Crops and Weeds: History, Development, and Management. New Jersey : John Wiley & Sons.

Nešković, N. K., Poleksić, V., Elezović, I., Karan, V., & Budimir, M. (1996). Biochemical and histopathological effects of glyphosate on carp, Cyprinus carpio L. Bulletin of Environmental Contamination and Toxicology, 56(2), 295–302.

Nomura, N. S., & Hilton, H. W. (1977). The adsorption and degradation of glyphosate in five Hawaiian sugarcane soils. Weed Research, 17(2), 113–121.

Nourouzi, M. M., Chuah, T. G., Choong, T. S. Y., & Lim, C. J. (2011). Glyphosate utilization as the source of carbon: Isolation and identification of new bacteria. Journal of Chemistry, 8(4), 1582-1587.

Paerl, H. (2008). Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater–marine continuum. In H. K. Hudnell (Ed.), Cyanobacterial harmful algal blooms: State of the science and research needs (pp. 217–237). Springer New York.

Pipke, R., & Amrhein, N. (1988). Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Applied and Environmental Microbiology, 54(5), 1293–1296.

Pollegioni, L., Schonbrunn, E., & Siehl, D. (2011). Molecular basis of glyphosate resistance: Different approaches through protein engineering. The FEBS Journal, 278(16), 2753–2766.

Ratcliff, A. W., Busse, M. D., & Shestak, C. J. (2006). Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Applied Soil Ecology, 34(2–3), 114–124.

Ren, L., Wang, P., Wang, C., Chen, J., Hou, J., & Qian, J. (2017). Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments. Environmental Pollution (Barking, Essex: 1987), 220(Pt A), 274–285.

Roberts, T. R., Hutson, D. H., Lee, P. W., Nicholls, P. H., Plimmer, J. R., Roberts, M. C., & Croucher, L. (Eds.). (1998). Metabolic Pathways of Agrochemicals: Part 1: Herbicides and Plant Growth Regulators (1 edition). Cambridge: Royal Society of Chemistry.

Roshon, R. D., McCann, J. H., Thompson, D. G., & Stephenson, G. R. (1999). Effects of seven forestry management herbicides on Myriophyllum sibiricum, as compared with other non target aquatic organisms. Canadian Journal of Forest Research, 29(7), 1158–1169.

Rueppel, M. L., Brightwell, B. B., Schaefer, J., & Marvel, J. T. (1977). Metabolism and degradation of glyphosate in soil and water. Journal of Agricultural and Food Chemistry, 25(3), 517–528.

Sánchez, D., Graça, M. A. S., & Canhoto, J. (2007). Testing the use of the water milfoil (Myriophyllum spicatum L.) in laboratory toxicity assays. Bulletin of Environmental Contamination and Toxicology, 78(6), 421–426.

Schaffer, J. D., & Sebetich, M. J. (2004). Effects of aquatic herbicides on primary productivity of phytoplankton in the laboratory. Bulletin of Environmental Contamination and Toxicology, 72(5), 1032–1037.

Schnurer, Y., Persson, P., Nilsson, M., Nordgren, A., & Giesler, R. (2006). Effects of surface sorption on microbial degradation of glyphosate. Environmental Science and Technology, 40(13), 4145–4150.

Selvapandiyan, A., & Bhatnagar, R. K. (1994). Cloning of genes encoding for C-P lyase from Pseudomonas isolates PG2982 and GLC11: Identification of a cryptic allele on the chromosome of P. aeruginosa. Current Microbiology, 29(5), 255–261.

Sharma, S. D., & Singh, M. (2001). Environmental factors affecting absorption and bio-efficacy of glyphosate in Florida beggarweed (Desmodium tortuosum). Crop Protection, 20(6), 511–516.

Sprankle, P., Meggitt, W. F., & Penner, D. (1975). Adsorption, mobility, and microbial degradation of glyphosate in the soil. Weed Science, 23(3), 229–234.

Sobrero, M. C., Rimoldi, F., & Ronco, A. E. (2007). Effects of the glyphosate active ingredient and a formulation on lemna gibba l. at different exposure levels and assessment end-points. Bulletin of Environmental Contamination and Toxicology, 79(5), 537–543.

Sviridov, A. V., Shushkova, T. V., Ermakova, I. T., Ivanova, E. V., Epiktetov, D. O., & Leontievsky, A. A. (2015). Microbial degradation of glyphosate herbicides (Review). Applied Biochemistry and Microbiology, 51(2), 188–195.

Sviridov, A. V., Shushkova, T. V., Zelenkova, N. F., Vinokurova, N. G., Morgunov, I. G., Ermakova, I. T., & Leontievsky, A. A. (2012). Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Applied Microbiology and Biotechnology, 93(2), 787–796.

Tsui, M. T. K., & Chu, L. M. (2003). Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere, 52(7), 1189–1197.

Vendrell, E., Ferraz, D. ., Sabater, C., & Carrasco, J. M. (2009). Effect of glyphosate on growth of four freshwater species of phytoplankton : A microplate bioassay. Bulletin of Environmental Contamination and Toxicology, 82, 538–542.

Vera, M. S., Lagomarsino, L., Sylvester, M., Pérez, G. L., Rodríguez, P., Mugni, H., … Pizarro, H. (2010). New evidences of Roundup (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology (London, England), 19(4), 710–721.

Tzin, V., & Galili, G. (2010). The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana .The Arabidopsis Book / American Society of Plant Biologists, 8.

Wackett, L. P., Shames, S. L., Venditti, C. P., & Walsh, C. T. (1987). Bacterial carbon-phosphorus lyase: products, rates, and regulation of phosphonic and phosphinic acid metabolism. Journal of Bacteriology, 169(2), 710–717.

Ware, G. W. (2000). Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews. Springer Science & Business Media.

Wetzel, R. G. (2001). Limnology: Lake and River Ecosystems. Gulf Professional Publishing

White, A. K., & Metcalf, W. W. (2004). Two C—P Lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite. Journal of Bacteriology, 186(14), 4730–4739.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Pertanika Journal of Scholarly Research Reviews, (e-ISSN: 2462-2028, ISSN: 2636-9141) published by Universiti Putra Malaysia Press