Ozone Application in Fresh Fruits and Vegetables

Khawarizmi Mohd Aziz, Phebe Ding


The demand of fruits and vegetables across the world had increased throughout the years which urge the need to have better and proper way to increase produce safety, quality and postharvest life. Traditionally pesticides or other chemicals had been used to encounter microbes related to postharvest diseases. Over time, consumers are concern towards health effect of consuming those produce treated with chemicals. Ozone is one of the approach that provide both of the needs to deal with pathogenic microbes and also give no harmful residue throughout the process. Several reports had proven that ozone can almost kill or inhibit all pathogenic microbes on treated commodity which promote higher quality and postharvest life during storage. This review focus and summarise the use of ozone in the form of aqueous and gaseous towards fresh produces, its benefits and also the precaution during ozone application.


Disease, postharvest life, quality, safety

Full Text:



Alencar, E. R., Faroni, L. R., Pinto, M. S., Costa, A. R., & Carvalho, A. F. (2014). Effectiveness of ozone on postharvest conservation of Pear (Pyrus communis L.). Journal of Food Processing & Technology, 5(4), 317-32.1 http://doi.org/10.4172/2157-7110.1000317

Ali, A., Ong, M. K., & Forney, C. F. (2014). Effect of ozone pre-conditioning on quality and antioxidant capacity of papaya fruit during ambient storage. Food Chemistry, 142, 19–26. http://doi.org/10.1016/j.foodchem.2013.07.039

Anon. (2015). Basic ozone layer science US EPA. In US Environmental Protection Agency. Retrieved from http://www3.epa.gov/ozone/basicinfo.html

Barth, M. M., Zhou, C., Mercier, J., & Payne, F.A. (1995). Ozone storage effects on anthocyanin content and fungal growth in blackberries. Journal of Food Science, 60, 1286-1288. http://doi.org/10.1111/j.1365-2621.1995.tb04575.x

Bataller, M., González, J. E., Veliz, E., & Fernández, L. A. (2012). Ozone applications in the post-harvest of papaya (Carica papaya L.): An alternative to Amistar fungicide. Ozone: Science & Engineering, 34(3), 151–155. http://doi.org/10.1080/01919512.2012.662728

Forney, C. F., Song, J., Fan, L., Hildebrand, P. D., & Forney, C. F. (2000). Biological effects of corona discharge on onions in a commercial storage facility. HortTechnology, 10(3), 608–612.

Gabler, F. M., Smilanick, J. L., Mansour, M. F., & Karaca, H. (2010). Influence of fumigation with high concentrations of ozone gas on postharvest gray mold and fungicide residues on table grapes. Postharvest Biology and Technology, 55(2), 85–90. http://doi.org/10.1016/j.postharvbio.2009.09.004

Seydim, G. Z. B., Greene, A. K., & Seydim, A. C. (2004). Use of ozone in the food industry. Lebensmittel-Wissenschaft Und-Technologie, 37, 453–460. http://doi.org/10.1016/j.lwt.2003.10.014

Hill, A. G., & Rice, R. G. (1982). Historical background, properties and applications. In R. G. Rice (Ed.), Ozone treatment of water for cooling application (1–37). Ann Arbor, Michigan: Ann Arbor Science Publishers.

Ikeura, H., Kobayashi, F., & Tamaki, M. (2011). Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods. Journal of Food Engineering, 103(3), 345–349. http://doi.org/10.1016/j.jfoodeng.2010.11.002

Karaca, H. (2010). Use of ozone in the citrus industry. Ozone: Science & Engineering, 32(2), 122–129. http://doi.org/10.1080/01919510903520605

Karaca, H., & Velioglu, Y. S. (2007). Ozone applications in fruit and vegetable processing. Food Reviews International, 23(1), 91–106. http://doi.org/10.1080/87559120600998221

Kim, J., Yousef, A. E., & Chism, G. W. (1998). Use of ozone to inactivate microorganisms on lettuce. Journal of Food Safety, 19, 17–34.

Kim, J.G., Yousef, A.E., & Dave, S. (1999). Application of Ozone for Enhancing the Microbiological Safety and Quality of Foods: A Review. Journal of Food Protection, 62(9), 1071–1087.

Langlais, B., Reckhow, D. A., & Brink, D. R. (1991). Practical application of ozone: Principle and case study. In “Ozone in Water Treatment,” Lewis Publishers. Chelsea, Mich.

Mahajan, P. V., Caleb, O. J., Singh, Z., Watkins, C. B., & Geyer, M. (2014). Postharvest treatments of fresh produce. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2017), 20130309. http://doi.org/10.1098/rsta.2013.0309

Olmez, H., & Dogan, H. (2002). Applications of Ozone in Food Industry: An Alternative to Methyl Bromide and Chlorine. In Priority Thematic Area of Research FP 6. Marmara Research Center: Turkey.

Ong, M. K., Kazi, F. K., Forney, C. F., & Ali, A. (2013). Effect of gaseous ozone on papaya anthracnose. Food and Bioprocess Technology, 6(11), 2996–3005. http://doi.org/10.1007/s11947-012-1013-4

Palou, L., Crisosto, C. H., Smilanick, J. L., Adaskaveg, J. E., & Zoffoli, J. P. (2002). Effects of continuous 0.3 ppm ozone exposure on decay development and physiological responses of peaches and table grapes in cold storage. Postharvest Biology and Technology, 24, 39–48. http://doi.org/10.1016/S0925-5214(01)00118-1

Palou, L., Smilanick, J. L., Crisosto, C. H., & Mansour, M. (2001). Effect of gaseous ozone exposure on the development of green and blue molds on cold stored citrus fruit. Plant Disease, 85(6), 632–638. http://doi.org/10.1094/PDIS.2001.85.6.632

Palou, L., Smilanick, J. L., & Margosan, D. A. (2006). Ozone applications for sanitation and control of postaharvest diseases of fresh fruits and vegetables. In Troncoso-Rojas, R.; Tiznado-Hernández, M. E.; González-León, A. (Eds.), Recent advances in alternative postharvest technologies to control fungal diseases in fruits and vegetables (39-70). Trivandrum: Transworld Research Network.

Pérez, A. G., Sanz, C., Ríos, J. J., Olías, R., & Olías, J. M. (1999). Effects of ozone treatment on postharvest strawberry quality. Journal of Agricultural and Food Chemistry, 47(4), 1652–1656. http://doi.org/10.1021/jf980829l

Rao M. V., Koch J. R., & Davis K. R. (2000). Ozone: a tool for probing programmed cell death in plants. Plant Molecular Biology, 44, 345-358.

Rice, R. G. (1986). Application of ozone in waterand waste water treatment. In R. G. Rice, & M. J. Browning (Eds.), Analytical aspects of ozone treatment of water and waste water (7–26). Syracuse, NY: The Institute.

Rice, R. G. (2010). Commercial applications of ozone in food processing. Case Studies in Novel Food Processing Technologies (Vol. 3). Woodhead Publishing Limited. http://doi.org/10.1533/9780857090713.2.258

Rice, R. G., & Graham, D. M. (2001). US FDA regulatory approval of ozone as an antimicrobial agent – what is allowed and what needs to be understood. Ozon News, 29(5), 22–31.

Rice, R. G., Robson, C. M., Miller, G. W., & Hill, A. G. (1981). Uses of ozone in drinking water treatment. Journal of the American Water Works Association, 73(1), 44–57.

Rice, R.G., Farquhar, W., and Bollyky, L.J. (1982). Review of the application of ozone for increasing storage time for perishable foods. Ozone Science & Engineering, 4(1): 147-163.

Seydim, G. Z. B., Greene, A. K., & Seydim, A. C. (2004). Use of ozone in the food industry. LWT - Food Science and Technology, 37(4), 453–460. http://doi.org/10.1016/j.lwt.2003.10.014

Sharma, R. R., Demirci, a L. I., Beuchat, L. R., & Fett, W. F. (2003). Application of ozone for inactivation of Escherichia Coli 0157:H7 on inoculated alfalfa sprouts. Journal of Food Processing and Preservation, 27(1), 51–64. http://doi.org/10.1111/j.1745-4549.2003.tb00500.x

Skog L. J., & Chu, C. L. (2001). Effect of ozone on qualities of fruits and vegetables in cold storage. Canadian Journal of Plant Science, 81(5), 773–778. http://doi.org/10.4141/P00-110

Smilanick, J. L. (2003). Use of ozone in storage and packing facilities. Washington Tree Fruit Postharvest Conference Wenatche, Washington, 1–10.

Smilanick, J. L., Crisosto, C., & Mlikota, F. (1999). Postharvest use of ozone on fresh fruit. Perishables Handling Quarterly, 99(1999), 10–14.

Somasundaram, L., Coats, J. R., Racke, K., & Stahr, H. M. (1990). Application of the microtox system to assess the toxicity of pesticides and their hydrolysis metabolites.pdf. Bulletein of Environmental Contamination and Toxicology, 44, 254–259.

Suslow, T. (1998). Basics of ozone applications for postharvest treatment of fruits and vegetables. Perishables Handling Quarterly, 94, 9–11.

Suslow, T. (2000). Chlorination in the production and postharvest handling of fresh fruits and vegetables. Fruit and Vegetable Processing, 2 – 15.

Suslow, T. (2004). Ozone applications for postharvest disinfection of edible horticultural crops. UCDavis Extension Publication, 8113, 1–8.

Tran, T. T. L., S., A., Srilaong, V., Jitareerat, P., Wongs, A. C., & Uthairatanakij, A. (2013). Fumigation with ozone to extend the storage life of mango fruit cv Nam Dok Mai No . 4. Agricultural Sci. J, 44(4), 663–672.

Tzortzakis, N., Singleton, I., & Barnes, J. (2008). Impact of low-level atmospheric ozone-enrichment on black spot and anthracnose rot of tomato fruit. Postharvest Biology and Technology, 47, 1–9. http://doi.org/10.1016/j.postharvbio.2007.06.004

Whangchai, K., Saengnil, K., & Uthaibutra, J. (2006). Effect of ozone in combination with some organic acids on the control of postharvest decay and pericarp browning of longan fruit. Crop Protection, 25(8), 821–825. http://doi.org/10.1016/j.cropro.2005.11.003

Wu, J., Luan, T., Lan, C., Hung Lo, T. W., & Chan, G. Y. S. (2007). Removal of residual pesticides on vegetable using ozonated water. Food Control, 18(5), 466–472. http://doi.org/10.1016/j.foodcont.2005.12.011

Xu, L. (1999). Use of ozone to improve the safety of fresh fruits and vegetables. Food Technology, 53(10), 58–62.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Pertanika Journal of Scholarly Research Reviews, (e-ISSN: 2462-2028, ISSN: 2636-9141) published by Universiti Putra Malaysia Press