Sulfated Galactans from Red Seaweeds and their Potential Applications

Yi Yi Lim, Wei Kang Lee, Adam Thean Chor Leow, Parameswari Namasivayam, Janna Ong Abdullah, Chai Ling Ho


Red seaweeds (Rhodophyta) produce a variety of sulfated galactans in their cell wall matrix and intercellular space, contributing up to 50-60 % of their total dry weight. These sulfated polysaccharides are made up of galactose disaccharides substituted with sulfate, methoxyl, pyruvic acid, or non-galactose monosaccharides (e.g. xylose, glucose and mannose). They are required by the Rhodophytes for protection against pathogen, desiccation, tidal waves and extreme changes in pH, temperature and salinity. Since ancient times, sulfated galactans from red seaweeds, such as agar and carrageenan, have been consumed as human foods and later being used in traditional medicine. Nowadays, some red seaweeds are cultivated and exploited for commercial uses in various fields. In this review, different types of sulfated galactans found in red seaweeds and their current and potential uses in food, biotechnology, medical and pharmaceutical industries are discussed.


Agar, carrageenan, red seaweed, Rhodophyta, sulfated galactan

Full Text:



Adinarayana, K., Jyothi, B., & Ellaiah, P. (2005). Production of alkaline protease with immobilized cells of Bacillus subtilis PE-11 in various matrices by entrapment technique. Journal of the American Association of Pharmaceutical Scientists, 6, 391-397.

Al-Haj, N. A., Mashan, N. I., Shamsudin, M. N., Mohamad, H., Vairappan, C. S., & Sekawi, Z. (2009). Antibacterial activity in marine algae Eucheuma denticulatum against Staphylococcus aureus and Streptococcus pyogenes. Research Journal of Biological Science, 4, 519-524.

Andrade, R. M., Rodrigues, J. A. G., de Araújo, I. V. F., Benevides, N. M. B., Tovar, A. M. F., & de Souza Mourão, P. A. (2017). In vitro inhibition of thrombin generation by sulfated polysaccharides from the marine alga Solieria filiformis (Kützing) Gabrielson (Solieriaceae, Rhodophyta). Acta of Fisheries and Aquatic Resources, 5, 1-10.

Armisén, R. (1991). Agar and agarose biotechnological applications. Hydrobiologia, 221, 157-166.

Armisen, R. (1995). World-wide use and importance of Gracilaria. Journal of Applied Phycology, 7, 231-243.

Armisen, R., & Galactas, F. (1987). Production, properties and uses of agar. In D. J. McHugh (Ed.) Production and utilization of products from commercial seaweeds, FAO Fisheries Technical Paper 288: 1-57.

Armisen, R., Galatas, F., Phillips, G. O., & Williams, P. A. (2009). Agar. Handbook of Hydrocolloids, 82-107.

Bico, S. L. S., Raposo, M. F. J., Morais, R. M. S. C., & Morais, A. M. M. B. (2009). Combined effects of chemical dip and/or carrageenan coating and/or controlled atmosphere on quality of fresh-cut banana. Food Control, 20, 508-514.

Bilal, M., Asgher, M., Shahid, M., & Bhatti, H. N. (2016). Characteristic features and dye degrading capability of agar–agar gel immobilized manganese peroxidase. International Journal of Biological Macromolecules, 86, 728-740.

Bixler, H. J. (1994). The carrageenan connection IV. British Food Journal, 96, 12-17.

Cáceres, P. J., Carlucci, M. J., Damonte, E. B., Matsuhiro, B., & Zúñiga, E. A. (2000). Carrageenans from chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity. Phytochemistry, 53, 81-86.

Carlucci, M. J., Pujol, C. A., Ciancia, M., Noseda, M. D., Matulewicz, M. C., Damonte, E. B., & Cerezo, A. S. (1997). Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. International Journal of Biological Macromolecules, 20, 97-105.

Carlucci, M. J., Scolaro, L. A., & Damonte, E. B. (1999). Inhibitory action of natural carrageenans on herpes simplex virus infection of mouse astrocytes. Chemotherapy, 45, 429-436.

Carlucci, M. J., Scolaro, L. A., Noseda, M. D., Cerezo, A. S., & Damonte, E. B. (2004). Protective effect of a natural carrageenan on genital herpes simplex virus infection in mice. Antiviral Research, 64, 137-141.

Cases, M. R., Stortz, C. A., & Cerezo, A. S. (1992). Methylated, sulphated xylogalactans from the red seaweed Corallina officinalis. Phytochemistry, 31, 3897-3900.

Chattopadhyay, K., Mateu, C. G., Mandal, P., Pujol, C. A., Damonte, E. B., & Ray, B. (2007). Galactan sulfate of Grateloupia indica: Isolation, structural features and antiviral activity. Phytochemistry, 68, 1428-1435.

Chen, P., Shao, H. B., Xu, D., & Qin, S. (2009). Progress in Gracilaria biology and developmental utilization: main issues and prospective. Reviews in Fisheries Science, 17, 494-504.

Chen, Y., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J., & Marks, R. M. (1997). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Medicine, 3, 866-871.

Chiovitti, A., Bacic, A., Craik, D. J., Kraft, G. T., Liao, M. L., Falshaw, R., & Furneaux, R. H. (1998). A pyruvated carrageenan from Australian specimens of the red alga Sarconema filiforme. Carbohydrate Research, 310, 77-83.

Cosenza, V. A., Navarro, D. A., & Stortz, C. A. (2017). Minor polysaccharidic constituents from the red seaweed Hypnea musciformis. Appearance of a novel branched uronic acid. Carbohydrate Polymers, 157, 156-166.

Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., Almeida-Lima, J., Farias, E. H. C., Leite, E. L., & Rocha, H. A. O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64, 21-28.

Craigie, J. S. (1990) Cell walls. In Cole, K. M., Sheath, R. G. (eds), Biology of the Red Algae, pp 221-257. Cambridge University Press, Cambridge.

Damonte, E. B., Matulewicz, M. C., Cerezob, A. S., & Coto, C. E. (1996). Herpes simplex virus-inhibitory sulfated xylogalactans from the red seaweed Nothogenia fastigiata. Chemotherapy, 42, 57-64.

De Ruiter, G. A., & Rudolph, B. (1997). Carrageenan biotechnology. Trends in Food Science & Technology, 8, 389-395.

De Souza, M. C. R., Marques, C. T., Dore, C. M. G., da Silva, F. R. F., Rocha, H. A. O., & Leite, E. L. (2007). Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. Journal of Applied Phycology, 19, 153-160.

DeFreitas, Z., Sebranek, J. G., Olson, D. G., & Carr, J. M. (1997). Carrageenan effects on thermal stability of meat proteins. Journal of Food Science, 62, 544-547.

Delattre, C., Fenoradosoa, T. A., & Michaud, P. (2011). Galactans: an overview of their most important sourcing and applications as natural polysaccharides. Brazilian Archives of Biology and Technology, 54, 1075-1092.

Doyle, J. P., Giannouli, P., Rudolph, B., & Morris, E. R. (2010). Preparation, authentication, rheology and conformation of theta carrageenan. Carbohydrate Polymers, 80, 648-654.

Duarte, M. E. R., Noseda, D. G., Noseda, M. D., Tulio, S., Pujol, C. A., & Damonte, E. B. (2001). Inhibitory effect of sulfated galactans from the marine alga Bostrychia montagnei on herpes simplex virus replication in vitro. Phytomedicine, 8, 53-58.

Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124, 411-421.

Estevez, J. M., Ciancia, M., & Cerezo, A. S. (2004). The system of galactans of the red seaweed, Kappaphycus alvarezii, with emphasis on its minor constituents. Carbohydrate Research, 339, 2575-2592.

Estevez, J. M., Ciancia, M., & Cerezo, A. S. (2008). The system of sulfated galactans from the red seaweed Gymnogongrus torulosus (Phyllophoraceae, Rhodophyta): Location and structural analysis. Carbohydrate Polymers, 73, 594-605.

Falshaw, R., Bixler, H. J., & Johndro, K. (2001). Structure and performance of commercial kappa-2 carrageenan extracts: I. Structure analysis. Food Hydrocolloids, 15, 441-452.

Farias, W. R. L., Valente, A. P., Pereira, M. S., & Mourao, P. A. S. (2000). Structure and anticoagulant activity of sulfated galactans - isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. Journal of Biological Chemistry, 275, 29299-29307.

Fenoradosoa, T. A., Delattre, C., Laroche, C., Wadouachi, A., Dulong, V., Picton, L., Andriamadio, P., & Michaud, P. (2009). Highly sulphated galactan from Halymenia durvillei (Halymeniales, Rhodophyta), a red seaweed of Madagascar marine coast. International Journal of Biological Macromolecules, 45, 140-145.

Freifelder, D. (1982). Applications to biochemistry and molecular biology. In W. H. Freeman and Co. (Eds.), Physical biochemistry. San Francisco.

Freile-Pelegrin, Y., & Murano, E. (2005). Agars from three species of Gracilaria (Rhodophyta) from Yucatan Peninsula. Bioresource Technology, 96, 295-302.

Ghosh, T., Pujol, C. A., Damonte, E. B., Sinha, S., & Ray, B. (2009). Sulfated xylomannans from the red seaweed. Sebdenia polydactyla: structural features, chemical modification and antiviral activity. Antiviral Chemistry and Chemotherapy, 19, 235-242.

Glicksman, M. (1987). Utilization of seaweed hydrocolloids in the food industry. Hydrobiologia, 151/152, 31-47.

Gómez-Ordóñez, E., Jiménez-Escrig, A., & Rupérez, P. (2010). Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Research International, 43, 2289-2294.

Gómez-Ordóñez, E., Jiménez-Escrig, A., & Rupérez, P. (2014). Bioactivity of sulfated polysaccharides from the edible red seaweed Mastocarpus stellatus. Bioactive Carbohydrates and Dietary Fibre, 3, 29-40.

Grice, H. C. (1988). Safety evaluation of butylated hydroxyanisole from the perspective of effects on forestomach and oesophageal squamous epithelium. Food and Chemical Toxicology, 26, 717-723.

Hilliou, L., Wilhelm, M., Yamanoi, M., & Gonclves, M.P. (2009). Structural and mechanical characterization of kappa/iota-hybrid carrageenan gels in potassium salt using Fourier Transform rheology. Food Hydrocolloids, 23, 2322-2330.

Hirase, S., & Watanabe, K., (1972). The presence of pyruvate residues in λ-carrageenan and a similar polysaccharide. Bulletin of the Institute for Chemical Research, Kyoto University, 50, 332-336.

Hu, X., Jiang, X., Aubree, E., Boulenguer, P., & Critchley, A. T. (2006). Preparation and in vivo. Antitumor activity of κ-carrageenan oligosaccharides. Pharmaceutical biology, 44(9), 646-650.

Huang, L. C., & Murashige, T. (1977). Plant tissue culture media: Major constitutents, their preparation and some applications. Methods in Cell Science, 3, 539-548.

Ibanoglu, E. (2005). Effect of hydrocolloids on the thermal denaturation of proteins. Food Chemistry, 90, 621-626.

Ichikawa, S., Takano, K., Kuroiwa, T., Hiruta, O., Sato, S., & Mukataka, S. (2002). Immobilization and stabilization of chitosanase by multipoint attachment to agar gel support. Journal of Bioscience and Bioengineering, 93, 201-206.

Ikeda, K., & Kusano, T. (1983). In vitro inhibition of digestive enzymes by indigestible polysaccharides. Cereal Chemistry, 60, 260-263.

Jiao, G., Yu, G., Zhang, J., & Ewart, H. S. (2011). Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs, 9, 196-223.

Jouanneau, D., Guibet, M., Boulenguer, P., Mazoyer, J., Smietana, M., & Helbert, W. (2010). New insights into the structure of hybrid kappa-/mu-carrageenan and its alkaline conversion. Food Hydrocolloids, 24, 452-461.

Khattar, J. I. S., Sarma, T. A., & Singh, D. P. (1999). Removal of chromium ions by agar immobilized cells of the cyanobacterium Anacystis nidulans in a continuous flow bioreactor. Enzyme and Microbial Technology, 25, 564-568.

Kim, H. J., Kim, W. J., Koo, B. W., Kim, D. W., Lee, J. H., & Nugroho, W. S. K. (2016). Anticancer activity of sulfated polysaccharides isolated from the Antarctic red seaweed Iridaea cordata. Ocean & Polar Research, 38, 129-137.

Kitazato, K., Wang, Y., & Kobayashi, N. (2007). Viral infectious disease and natural products with antiviral activity. Drug Discoveries & Therapeutics, 1, 14-22.

Kraan, S. (2012). Algal polysaccharides, novel applications and outlook. INTECH Open Access Publisher, 22, 489-524.

Kravchenko, A. O., Anastyuk, S. D., Sokolova, E. V., Isakov, V. V., Glazunov, V. P., Helbert, W., & Yermak, I. M. (2016). Structural analysis and cytokine-induced activity of gelling sulfated polysaccharide from the cystocarpic plants of Ahnfeltiopsis flabelliformis. Carbohydrate Polymers, 151, 523-534.

Kuroiwa, T., Shoda, H., Ichikawa, S., Sato, S., & Mukataka, S. (2005). Immobilization and stabilization of pullulanase from Klebsiella pneumoniae by a multipoint attachment method using activated agar gel supports. Process Biochemistry, 40, 2637-2642.

Lee, W. K., Lim, Y. Y., Leow, A. T. C., Namasivayam, P., Abdullah, J. O., & Ho, C. L. (2017a). Biosynthesis of agar in red seaweeds: A review. Carbohydrate Polymers, 164, 23-30.

Lee, W. K., Lim, Y. Y., Leow, A. T. C., Namasivayam, P., Abdullah, J. O., & Ho, C. L. (2017b). Factors affecting yield and gelling properties of agar. Journal of Applied Phycology, 29, 1527-1540.

Li, T., Li, S., Wang, N., & Tain, L. (2008). Immobilization and stabilization of pectinase by multipoint attachment onto an activated agar-gel support. Food Chemistry, 109, 703-708.

Lins, K. O., Bezerra, D. P., Alves, A. P., Alencar, N. M., Lima, M. W., Torres, V. M., Farias, W. R., Pessoa, C., de Moraes, M. O., & Costa-Lotufo, L. V. (2009). Antitumor properties of a sulfated polysaccharide from the red seaweed Champia feldmannii (Diaz-Pifferer). Journal of Applied Toxicology, 29, 20-26.

Maddox, I. S., Dunnill, P., & Lilly, M. D. (1981). Use of immobilized cells of Rhizopus nigricans for the 11α‐hydroxylation of progesterone. Biotechnology and Bioengineering, 23, 345-354.

Manohar, S., & Karegoudar, T. B. (1998). Degradation of naphthalene by cells of Pseudomonas sp. strain NGK 1 immobilized in alginate, agar and polyacrylamide. Applied Microbiology and Biotechnology, 49, 785-792.

Martone, P. T., Navarro, D. A., Sortz, C. A., & Estevez, J. M. (2010). Differences in polysaccharide structure between calcified and uncalcified segments in the coralline Calliarthron cheilosporioides (Corallinales, Rhodophyta). Journal of Phycology, 46, 507-515.

Matsuhiro, B., Conte, A. F., Damonte, E. B., Kolender, A. A., Matulewicz, M. C., Mejías, E. G., & Zúñiga, E. A. (2005). Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta). Carbohydrate Research, 340, 2392-2402.

McCandless, E. L., & Gretz, M. R. (1984). Biochemical and immunochemical analysis of carrageenans of the Gigartinaceae and Phyllophoraceae. Hydrobiologia, 116/117, 175-178.

McHugh, D. J. (1987). Production and utilization of products from commercial seaweeds. FAO Fisheries Technical Paper, 288, 1-189.

McLachlan, J. (1985). Macroalgae (seaweeds): industrial resources and their utilization. Plant and Soil, 89, 137-157.

Mendes, G. S., Duarte, M. E., Colodi, F. G., Noseda, M. D., Ferreira, L. G., Berté, S. D., & Romanos, M. T. (2014). Structure and anti-metapneumovirus activity of sulfated galactans from the red seaweed Cryptonemia seminervis. Carbohydrate Polymers, 101, 313-323.

Ming, M., Kuroiwa, T., Ichikawa, S., Sato, S., & Mukataka, S. (2006). Production of chitosan oligosaccharides by chitosanase directly immobilized on an agar gel-coated multidisk impeller. Biochemical Engineering Journal, 28, 289-294.

Manohar, S., & Karegoudar, T. B. (1998). Degradation of naphthalene by cells of Pseudomonas sp. strain NGK 1 immobilized in alginate, agar and polyacrylamide. Applied Microbiology and Biotechnology, 49, 785-792.

Mourão, P. A., & Pereira, M. S. (1999). Searching for alternatives to heparin: sulfated fucans from marine invertebrates. Trends in Cardiovascular Medicine, 9, 225-232.

Mulagalapalli, S., Kumar, S., Kalathur, R. C. R., & Kayastha, A. M. (2007). Immobilization of urease from pigeonpea (Cajanus cajan) on agar tablets and its application in urea assay. Applied Biochemistry and Biotechnology, 142, 291-297.

Navarro, D. A., & Stortz, C. A. (2008). The system of xylogalactans from the red seaweed Jania rubens (Corallinales, Rhodophyta). Carbohydrate Research, 343, 2613-2622.

Navarro, D. A., Ricci, A. M., Rodríguez, M. C., & Stortz, C. A. (2011). Xylogalactans from Lithothamnion heterocladum, a crustose member of the Corallinales (Rhodophyta). Carbohydrate Polymers, 84, 944-951.

Nawaz, M. A., Karim, A., Bibi, Z., Rehman, H. U., Aman, A., Hussain, D., Ullah, M., & Qader, S. A. U. (2016). Maltase entrapment approach as an efficient alternative to increase the stability and recycling efficiency of free enzyme within agarose matrix. Journal of the Taiwan Institute of Chemical Engineers, 64, 31-38.

Nunn, J. R., & Parolis, H. (1968). Sulphated polysaccharides of the Grateloupiaceae family Part II. Isolation of 4-O-methyl-l-galactose, 6-O-methyl-d-galactose, and two disaccharides from hydrolysates of aeodan. Carbohydrate Research, 8, 361-362.

Nussinovitsch, A., Kopelman, I. J., & Mizrahi, S. (1991). Modelling the combined effect of fruit pulp, sugar and gum on some mechanical parameters of agar and alginate gels. Lebensmittel-Wissenschaft Technologie, 24, 513-517.

O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P. G., Hughes, H., & Gardiner, G. E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs, 8, 2038-2064.

Okazaki, A. (1971). Seaweeds and their uses in Japan. Tokyo, Japan: Tokai University Press.

Pereira, L., Gheda, S. F., & Ribeiro-Claro, P. J. (2013). Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. International Journal of Carbohydrate Chemistry, doi:10.1155/2013/537202.

Pereira, M. G., Benevides, N. M. B., Melo, M. R. S., Valente, A. P., Melo, F. R., & Mourao, P.A.S. (2005). Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydrate Research, 340, 2015-2023.

Pierre, G., Sopena, V., Juin, C., Mastouri, A., Graber, M., & Maugard, T. (2011). Antibacterial activity of a sulfated galactan extracted from the marine alga Chaetomorpha aerea against Staphylococcus aureus. Biotechnology and Bioprocess Engineering, 16, 937-945.

Plotto, A. N. N. E., Narciso, J., Baldwin, E. A., & Rattanapanone, N. I. T. H. I. Y. A. (2006). Edible coatings and other surface treatments to maintain color of lychee fruit in storage. Proceedings of the Florida State Horticultural Society, 119, 323-331.

Plotto, A., Narciso, J. A., Rattanapanone, N., & Baldwin, E. A. (2010). Surface treatments and coatings to maintain fresh‐cut mango quality in storage. Journal of the Science of Food and Agriculture, 90, 2333-2341.

Pomin, V. H. (2010). Structural and functional insights into sulfated galactans: a systematic review. Glycoconjugate Journal, 27, 1-12.

Porse, H., & Rudolph, B. (2017). The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. Journal of Applied Phycology, 29, 2187-2200.

Prakash, O., & Jaiswal, N. (2011). Immobilization of a thermostable"-amylase on agarose and agar matrices and its application in starch stain removal. World Applied Sciences Journal, 13, 572-577.

Pujol, C. A., Estevez, J. M., Carlucci, M. J., Ciancia, M., Cerezo, A. S., & Damonte, E. B. (2002). Novel DL-galactan hybrids from the red seaweed Gymnogongrus torulosus are potent inhibitors of herpes simplex virus and dengue virus. Antiviral Chemistry and Chemotherapy, 13, 83-89.

Rehman, H. U., Aman, A., Zohra, R. R., & Qader, S. A. U. (2014). Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support. Carbohydrate Polymers, 102, 622-626.

Renn, D. W., (1984). Agar and agarose: indispensable partners in biotechnology. Industrial & Engineering Chemistry Product Research and Development, 23, 17-21.

Renn, D. W., (1990). Seaweeds and biotechnology: inseparable companions. Hydrobiologia, 204/205, 7-13.

Rivera-Posada, J., Owens, L., Caballes, C. F., & Pratchett, M. S. (2012). The role of protein extracts in the induction of disease in Acanthaster planci. Journal of Experimental Marine Biology and Ecology, 429, 1-6.

Rodríguez, M. C., Merino, E. R., Pujol, C. A., Damonte, E. B., Cerezo, A. S., & Matulewicz, M. C. (2005). Galactans from cystocarpic plants of the red seaweed Callophyllis variegata (Kallymeniaceae, Gigartinales). Carbohydrate Research, 340, 2742-2751.

Ruperez, P., & Saura-Calixto, F. (2001). Dietary fibre and physicochemical properties of edible Spanish seaweeds. European Food Research and Technology, 212, 349-354.

Sae-Lao, T., Tohtong, R., Bates, D. O., & Wongprasert, K. (2017). Sulfated galactans from red seaweed Gracilaria fisheri target EGFR and inhibit cholangiocarcinoma cell proliferation. The American Journal of Chinese Medicine, 45, 615-633.

Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of Food Science and Technology, 47, 587-597.Schaeffer, D. J., & Krylov, V. S. (2000). Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicology and Environmental Safety, 45, 208-227.

Shukla, M. K., Kumar, M., Prasad, K., Reddy, C. R. K., & Jha, B. (2011). Partial characterization of sulfohydrolase from Gracilaria dura and evaluation of its potential application in improvement of the agar quality. Carbohydrate Polymers, 85, 157-163.

Soares, M. D. F. C., de Oliveira Farias, E. A., da Silva, D. A., & Eiras, C. (2016). Development and characterization of hybrid films based on agar and alizarin red S for applications as non-enzymatic sensors for hydrogen peroxide. Journal of Materials Science, 51, 7093-7107.

Souza, B. W., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Martins, J. T., Teixeira, J. A., Coimbra, M. A., & Vicente, A. A. (2012). Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 27, 287-292.

Suzuki, S., Karube, I., Matsunaga, T., Kuriyama, S., Suzuki, N., Shirogami, T., & Takamura, T. (1980). Biochemical energy conversion using immobilized whole cells of Clostridium butyricum. Biochimie, 62, 353-358.

Talarico, L. B., & Damonte, E. B. (2007). Interference in dengue virus adsorption and uncoating by carrageenans. Virology, 363, 473-485.

Talarico, L. B., Duarte, M. E. R., Zibetti, R. G. M., Noseda, M. D., & Damonte, E. B. (2007). An algal-derived DL-galactan hybrid is an efficient preventing agent for in vitro dengue virus infection. Planta Medica, 73, 1464-1468.

Tobacman, J. K. (2001). Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environmental Health Perspectives, 109, 983-994.

Tong, X. D., & Sun, Y. (2001). Agar‐based magnetic affinity support for protein adsorption. Biotechnology Progress, 17, 738-743.

Van de Velde, F. (2008). Structure and function of hybrid carrageenans. Food Hydrocolloids, 22, 727-734.

Van de Velde, F., & de Ruiter, G. A. (2002). Carrageenan. In: E. J. Vandamme, S. D. Baets, & A, Steinbèuchel (Eds.) Biopolymers, volume 6, polysaccharides II: Polysaccharides from eukaryotes (pp. 245-274). Weinheim: Wiley.

Van de Velde, F., Pereira, L., & Rollema, H. S. (2004). The revised NMR chemical shift data of carrageenans. Carbohydrate Research, 339, 2309-2313.

Vassileva, A., Burhan, N., Beschkov, V., Spasova, D., Radoevska, S., Ivanova, V., & Tonkova, A. (2003). Cyclodextrin glucanotransferase production by free and agar gel immobilized cells of Bacillus circulans ATCC 21783. Process Biochemistry, 38, 1585-1591.

Verbeken D., Thas O., & Dewettinck K. (2004). Textural properties of gelled dairy desserts containing κ-carrageenan and starch. Food Hydrocolloids, 18, 817-833.

Walstra, P. (2003). Physical chemistry of foods. New York: Marcel Dekker.

Warkentin, T. E., Levine, M. N., Hirsh, J., Horsewood, P., Roberts, R. S., Gent, M., & Kelton, J. G. (1995). Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. New England Journal of Medicine, 332, 1330-1336.

Weiner, M. L. (1991). Toxicological properties of carrageenan. Agents and Actions, 32, 46-51.

Witvrouw, M., & De Clercq, E. (1997). Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. General Pharmacology, 29, 497-511.

Wu, C. (1990). Training Manual on Gracilaria Culture and Seaweed Processing in China. China: FAO Fishery Technical Paper.

Yamashita, S., Sugita-Konishi, Y., & Shimizu, M. (2001). In vitro bacteriostatic effects on dietary polysaccharides. Food Science and Technology Research, 7, 262-264.

Yang, B., Yu, G., Zhao, X., Ren, W., Jiao, G., Fang, L., Wang, Y., Du, G., Tiller, C., Girouard, G., Barrow, C. J., Ewart, H. S., & Zhang, J. (2011). Structural characterisation and bioactivities of hybrid carrageenan-like sulphated galactan from red alga Furcellaria lumbricalis. Food Chemistry, 124, 50-57.

Yuan, H., & Song, J. (2005). Preparation, structural characterization and in vitro antitumor activity of kappa-carrageenan oligosaccharide fraction from Kappaphycus striatum. Journal of Applied Phycology, 17, 7-13.

Zhang, Q., Li, N., Liu, X., Zhao, Z., Li, Z., & Xu, Z. (2004). The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydrate Research, 339, 105-111.

Zhou, G., Sheng, W., Yao, W., & Wang, C. (2006). Effect of low molecular λ-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacological Research, 53, 129-134.

Zhou, G., Sun, Y., Xin, H., Zhang, Y., Li, Z., & Xu, Z. (2004). In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacological Research, 50, 47-53.

Zibetti, R. G., Noseda, M. D., Cerezo, A. S., & Duarte, M. E. (2005). The system of galactans from Cryptonemia crenulata (Halymeniaceae, Halymeniales) and the structure of two major fractions. Kinetic studies on the alkaline cyclization of the unusual diad G2S→ D (L) 6S. Carbohydrate Research, 340, 711-722.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Pertanika Journal of Scholarly Research Reviews, (e-ISSN: 2462-2028, ISSN: 2636-9141) published by Universiti Putra Malaysia Press