Producing Transgenic Rice with Improved Traits and Yield – How Far Have We Come?

Wong Kiing Fook Clement, Mui Yun Wong, Kadir Jugah, Mahmood Maziah

Abstract


Improving rice production is of current global concern so that food security is maintained especially in developing nations where rice remains as the staple food. With the aid of molecular biology, various isolated genes conferring to abiotic, biotic and herbicide stress tolerance has been successfully transferred into rice. Attempts have also been made to enhance grain yield, nutritional characteristics, fragrance and photosynthetic capacity of rice. The success of a commercialized transgenic rice largely depends on the biosafety and environmental risks assessments as these information translates into consumers’ acceptance towards genetically modified (GM) rice. As the renowned Golden Rice has received the green light for field trial in the Philippines and Bangladesh, this would serve as a catalyst for better acceptance of GM food crops. A brief case study on the commercialization of transgenic BT rice in China will also be discussed. The review aims to bring useful insights for future endeavors in improving traits for rice through genetic engineering.

Full Text:

PDF

References


Agarwal, M., Sahi, C., Katiyar-Agarwal, S., Agarwal, S., Young, T., Gallie, D. R., Sharma, V.M., Ganesan, K., & Grover, A. (2003). Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Molecular Biology, 51(4), 543–553.

Ali, N., Paul, S., Gayen, D., Sarkar, S. N., Datta, K., & Datta, S. K. (2013a). Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1). PloS One, 8(7), e68161.

Ali, N., Paul, S., Gayen, D., Sarkar, S. N., Datta, S. K., & Datta, K. (2013b). RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice. Rice, 6(1), 12.

Arenhart, R. A., Lima, J. C. De, Pedron, M., Carvalho, F. E. L., Silveira, J. A. G. Da, Rosa, S. B., Caverzan, A., Andrade, C.M.B., Schunemann, M., Margis, R., & Margis-Pinheiro, M. (2013). Involvement of ASR genes in aluminium tolerance mechanisms in rice. Plant, Cell & Environment, 36(1), 52–67.

Azevedo, R., Gratão, P. L., Monteiro, C. C., & Carvalho, R. F. (2012). What is new in the research on cadmium-induced stress in plants? Food and Energy Security, 1(2), 133–140.

Bakshi, S. & Dewan, D. (2013). Status of transgenic crops: a review. Cloning and Transgenesis, 3, 119.

Bailey-Serres, J., Fukao, T., Ronald, P., Ismail, A., Heuer, S., & Mackill, D. (2010). Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice, 3, 138–147.

Bharathi, Y., Vijayakuma, S., China, P.I., Dasavantha, R.V., & Venkateswara, R.K. (2008). Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests. BMC Plant Biology, 8, 102.

Bharathi, Y., Vijaya Kumar, S., Pasalu, I. C., Balachandran, S. M., Reddy, V. D., & Rao, K. V. (2011). Pyramided rice lines harbouring Allium sativum (asal) and Galanthusnivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests. Journal of Biotechnology, 152(3), 63– 71.

Brini, F., & Masmoudi, K. (2012). Ion transporters and abiotic stress tolerance in plants. ISRN Molecular Biology, 2012, 1–13.

Bu, Q.-Y., Wu, L., Yang, S.-H., & Wan, J.-M. (2006). Cloning of a potato proteinase inhibitor gene PINII- 2x from diploid potato (Solanum phurejia L.) and transgenic investigation of its potential to confer insect resistance in rice. Journal of Integrative Plant Biology, 48(6), 732–739.

Busconi, M., Baldi, G., Lorenzoni, C., & Fogher, C. (2012). Gene flow from transgenic rice to red rice (Oryza sativa L.) in the field. Plant Biology, 16, 22–27.

Cheah, T. W., Ismail, I., Sidek, N. M., Wagiran, A., & Abdullah, R. (2013). Biosynthesis of very long polyunsaturated Omega-3 and Omega-6 fatty acids in transgenic Japonica rice (Oryza sativa L). Australian Journal of Crop Science, 7(9), 1227–1234.

Chen, D., Chen, X., Lei, C., Ma, B., Wang, Y., & Li, S. (2010). Rice blast resistance of transgenic rice plants with Pi-d2 gene. Rice Science, 17(3), 179–184.

Chen, M., Wei, X., Shao, G., Tang, S., Luo, J., & Hu, P. (2012). Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2. Plant Breeding, 131(5), 584–590.

Chen, M., Shelton, A., & Ye, G. (2011). Insect-resistant genetically modified rice in China: from research to commercialization. Annual Review of Entomology, 56, 81–101.

Christou, P., &Twyman, R. M. (2004). The potential of genetically enhanced plants to address food insecurity. Nutrition Research Reviews, 17(1), 23–42.

Datta, K., Rai, M., Parkhi, V., Oliva, N., Tan, J., & Datta, S. K. (2006). Improved “golden” indica rice and post-transgeneration enhancement of metabolic target products of carotenoids (β -carotene) in transgenic elite cultivars (IR64 and BR29). Current Science, 91(7), 3–7.

Deng, L. H., Weng, L. S., & Xiao, G. Y. (2014). Optimization of Epsps gene and development of double herbicide tolerant transgenic PGMS rice. Journal of Agriculture Science and Technology, 16, 217– 228.

Du, H., Wu, N., Cui, F., You, L., Li, X., & Xiong, L. (2014). A homolog of ETHYLENE OVERPRODUCER, OsETOL1, differentially modulates drought and submergence tolerance in rice. The Plant Journal, DOI:10.1111/tpj.12508

Duan, J., & Cai, W. (2012). OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PloS One, 7(9), e45117.

Dunwell, J. M. (2013). Transgenic cereals: Current status and future prospects. Journal of Cereal Science, doi:10.1016/j.jcs.2013.08.008

El-Kereamy, A., Bi, Y.-M., Ranathunge, K., Beatty, P. H., Good, A. G., & Rothstein, S. J. (2012). The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PloS One, 7(12), e52030.

Farré, G., Sudhakar, D., Naqvi, S., Sandmann, G., Christou, P., Capell, T., & Zhu, C. (2012). Transgenic rice grains expressing a heterologous ρ-hydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the γ to the α isoform without increasing absolute tocopherol levels. Transgenic Research, 21(5), 1093–1097.

Feng, L., Wang, K., Li, Y., Tan, Y., Kong, J., Li, H., Li, Y., & Zhu, Y. (2007). Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Reports, 26(9), 1635–1646.

Fukao, T. & Bailey-Serres, J. (2008). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of giberellin response in rice. PNAS, 105(43), 16814-16819.

Fukao, T., Yeung, E., and Bailey-Serres, J. (2011). The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. The Plant Cell, 23(1): 412–427.

Fujita, D., Trijatmiko, K. R., Tagle, A. G., Sapasap, M. V., Koide, Y., Sasaki, K., Tsakirpaloglou, N., Gannaban, R.B., Nishimura, T., Yanagihara, S., Fukuta, Y., Koshiba, T., Slamet-Loedin, I.H., Ishimaru, T., & Kobayashi, N. (2013). NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. PNAS, 110(51), 20431–20436.

Gamuyao, R., Chin, J. H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S., Dalid, C., Slamet-Loedin, I., Tecson-Mendoza, E.M., Wissuwa, M., & Heuer, S. (2012). The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature, 488(7412), 535–539.

Ganesan, U., Suri, S. S., Rajasubramaniam, S., Rajam, M. V., &Dasgupta, I. (2009). Transgenic expression of coat protein gene of rice tungro bacilliform virus in rice reduces the accumulation of viral DNA in inoculated plants. Virus Genes, 39(1), 113–119.

Gaxiola, R. A, Edwards, M., & Elser, J. J. (2011). A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture. Chemosphere, 84(6), 840–845.

Gibson, K., Park, J.-S., Nagai, Y., Hwang, S.-K., Cho, Y.-C., Roh, K.-H., Lee, S.-M., Kim, D.-H., Choi, S.-B., Ito, H., Edwards, G.E., &Okita, T. W. (2011). Exploiting leaf starch synthesis as a transient sink to elevate photosynthesis, plant productivity and yields. Plant Science, 181(3), 275-281.

Gu, J.-F., Qiu, M., & Yang, J.-C. (2013). Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes. The Crop Journal, 1(2), 105–114.

Guimaraes, E.P. (2009). Rice Breeding. In: Careena, M.J. (Ed.), Cereals: Handbook of Plant Breeding (pp.99-126). New York: Springer.

Gupta, S. K., Rai, A. K., Kanwar, S. S., Chand, D., Singh, N. K., & Sharma, T. R. (2012). The single functional blast resistance gene Pi54 activates a complex defence mechanism in rice. Journal of Experimental Botany, 63(2), 757–772.

Hakata, M., Kuroda, M., Ohsumi, A., Hirose, T., Nakamura, H., Muramatsu, M., Ichikawa, H., &Yamakawa, H. (2012). Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem. Bioscience, Biotechnology, and Biochemistry, 76(11), 2129–2134.

Hagan, N. D.,Upadhyaya, N., Tabe, L. M., & Higgins, T. J. V. (2003). The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. The Plant Journal,34(1), 1–11.

Helliwell, E. E., Wang, Q., & Yang, Y. (2013). Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaportheoryzae and Rhizoctoniasolani. Plant Biotechnology Journal, 11(1), 33–42.

Hiei, Y., Ohta, S., Komari, T., &Kumashiro, T. (1994). Efficient transformation of rice (Oryzasativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 6, 271-282.

Honda, R., Swaddiwudhipong, W., Nishijo, M., Mahasakpan, P., Teeyakasem, W., Ruangyuttikarn, W.,Satarug, S., Padungtod, C., & Nakagawa, H. (2010). Cadmium induced renal dysfunction among residents of rice farming area downstream from a zinc-mineralized belt in Thailand. Toxicology Letters, 198(1), 26–32.

Huang, C. F., Yamaji, N., Mitani, N., Yano, M., Nagamura, Y., & Ma, J. F. (2009a). A bacterial-type ABC transporter is involved in aluminum tolerance in rice. The Plant Cell, 21(2), 655–667.

Huang, J., Hu, R., Rozelle, S., & Pray, C. (2005). Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China. Science, 308(5722), 688–690.

Huang, J., Qin, F., Zang, G., Kang, Z., Zou, H., Hu, F., Yue, C., Li, X., & Wang, G. (2013). Mutation of OsDET1 increases chlorophyll content in rice. Plant Science, 210, 241–249

Huang, J., Sun, S.-J., Xu, D.-Q., Yang, X., Bao, Y.-M., Wang, Z.-F., Tang, H.-J., & Zhang, H. (2009b). Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochemical and Biophysical Research Communications, 389(3), 556–561.

Hur, Y. J., & Kim, D. H. (2014). Overexpression of OsMAPK 2 enhances low phosphate tolerance in rice and Arabidopsis thaliana. American Journal of Plant Sciences, 5, 452–462.

IRRI (2015). What is the status of the Golden Rice project coordinated by IRRI? Retrieved from irri.org/golden-rice/faqs

Ishimaru, Y., & Nishizawa, N. K. (2008). Mutational reconstructed ferric chelate reductase confersenhanced tolerance in rice to iron deficiency in calcareous soil. Protein, Nucleic Acid, Enzyme, 53(1), 65–71.

Itoh, Y., Takahashi, K., Takizawa, H., Nikaidou, N., Tanaka, H., Nishihashi, H., Watanabe, T., &Nishizawa, Y. (2003). Family 19 chitinase of Streptomyces griseus HUT6037 increases plant resistance to the fungal disease. Bioscience, Biotechnology, and Biochemistry, 67(4), 847–855.

James, C. (2011). Global status of commercialized biotech/GM crops. ISAAA, Ithaca, NY. Retrieved from http://www.isaaa.org/resources/publications/briefs/43/

James, C. (2014). Global Status of commercialized biotech/GM crops. ISAAA, Ithaca, NY. Retrieved from http://www.isaaa.org/resources/publications/briefs/49/

Jeong, M.-J., Lee, S.-K., Kim, B.-G., Kwon, T.-R., Cho, W.-S., Park, Y.-T., Lee, J.-O., Kwon, H.-B.,Byun, M.O., & Park, S.-C. (2006). A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant Cell, Tissue and Organ Culture, 85(2), 151–160.

Jiao, D., Huang, X., Li, X., Chi, W., Kuang, T., Zhang, Q., Ku, M.S.B., & Cho, D. (2002). Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosynthesis Research, 72(1): 85–93.

Kajala, K., Covshoff, S., Karki, S., Woodfield, H., Tolley, B. J., Dionora, M. J. A., Mogul, R.T., Mabilangan, A.E.., Danila, F.R., Hibberd, J.M., & Quick, W. P. (2011). Strategies for engineering a two-celled C(4) photosynthetic pathway into rice. Journal of Experimental Botany, 62(9), 3001– 3010.

Katsuhara, M. (2007). Molecular mechanisms of water uptake and transport in plant roots: research progress with water channel aquaporins. Plant Root, 1, 22–26.

Kim, S.-H., Lee, J.-Y., Yoon, U.-H., Lim, S.-H., & Kim, Y.-M. (2013). Effects of reduced prolamin on seed storage protein composition and the nutritional quality of rice. International Journal of Molecular Sciences, 14(8), 17073-17084.

Kim, S. G., Kim, S. T., Wang, Y., Kim, S.-K., Lee, C. H., Kim, K.-K., Kim, J.-K., Lee, S.Y., & Kang, K. Y. (2010). Overexpression of rice isoflavone reductase-like gene (OsIRL) confers tolerance to reactive oxygen species. Physiologia Plantarum, 138(1), 1–9.

Koh, S., Lee, S.-C., Kim, M.-K., Koh, J. H., Lee, S., An, G., Choe, S., & Kim, S.-R. (2007). T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Molecular Biology, 65(4), 453–466.

Kumar, K., Kumar, M., Kim, S.-R., Ryu, H., & Cho, Y.-G. (2013). Insights into genomics of salt stress response in rice. Rice, 6(1), 27.

Kumar, V., Shriram, V., Kavi Kishor, P. B., Jawali, N., & Shitole, M. G. (2009). Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnology Reports, 4(1), 37–48.

Lee, S., & An, G. (2009). Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell & Environment, 32(4), 408–416.

Lee, S., Jeon, U. S., Lee, S. J., Kim, Y.-K., Persson, D. P., Husted, S., Schjorring, J.K., Kakei, Y., Masuda, H., Nishizawa, N.K., & An, G. (2009). Iron fortification of rice seeds through activation of the nicotianamine synthase gene. PNAS, 106(51), 22014–22019.

Lee, S.-K., Kim, B.-G., Kwon, T.-R., Jeong, M.-J., Park, S.-R., Lee, J.-W., Byun, M,-O., Kwon, H.-B., Matthews, B.F., Hong, C.-B., & Park, S.-C. (2011). Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.). Journal of Biosciences, 36(1), 139–151.

Lee, T.-T., Chang, C.-C., Juang, R.-S., Chen, R.-B., Yang, H.-Y., Chu, L.-W., Wang, S.-R., Tseng, T.-H., Wang, C.-S., Chen, L.-J., & Yu, B. (2010). Porcine lactoferrin expression in transgenic rice and its effects as a feed additive on early weaned piglets. Journal of Agricultural and Food Chemistry, 58(8), 5166–5173.

Lee, T. T. T., Wang, M. M. C., Hou, R. C. W., Chen, L.-J., Su, R.-C., Wang, C.-S., &Tzen, J. T. C. (2003). Enhanced methionine and cysteine levels in transgenic rice seeds by the accumulation of sesame 2S albumin. Bioscience, Biotechnology, and Biochemistry, 67(8), 1699–1705.

Lian, H.-L., Yu, X., Ye, Q., Ding, X.-S., Kitagawa, Y., Kwak, S.-S., Su, W,-A., & Tang, Z.-C., (2004). The role of aquaporin RWC3 in drought avoidance in rice. Plant and Cell Physiology, 45(4), 481– 489.

Li, C., Wang, Y., Liu, L., Hu, Y., Zhang, F., Mergen, S., Wang, G., Schlappi, M., & Chu, C. (2011a). A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genetics, 7(7), e1002196.

Li, H.-J., Li, X.-H., Xiao, J.-H., Wing, R., & Wang, S.-P. (2012). Ortholog alleles at Xa3/Xa26 locus confer conserved race-specific resistance against Xanthomonasoryzae in rice. Molecular Plant, 5(1), 281–290.

Li, H.-W., Zang, B.-S., Deng, X.-W., & Wang, X.-P. (2011b). Overexpression of the trehalose-6- phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 234(5), 1007– 1018.

Li, J., Xu, S., Yang, L., Zhou, Y., Fan, S., & Zhang, W. (2009). Breeding elite japonica -type soft rice with high protein content through the introduction of the anti- Waxy gene. African Journal of Biotechnology,8(2), 161–166.

Li, Y., Hallerman, E.M., Liu, Q., Wu, K., & Peng Y. (2016). The development and status of Bt rice in China. Plant Biotechnology Journal, 14, 839-848.

Li, Y.H., Peng, Y.F., Hallerman, E.M., & Wu, K.M. (2014). Safety management and commercial use of genetically modified crops in China. Plant Cell Reports, 33, 565-573.

Liu, L., & Cao, C. (2014). Who owns the intellectual property rights to Chinese genetically modified rice? Evidence from patent portfolio analysis. Biotechnology Law Report, 33, 181-192.

Liu, M., Sun, Z., Zhu, J., Xu, T., Harman, G. E., & Lorito, M. (2004). Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride. Journal of Zhejiang University. Science, 5(2), 133–136.

Lu, B.-R. (2016). Challenges of transgenic crop commercialization in China. Nature Plants, 2, 16077.

Mallikarjuna, G., Mallikarjuna, K., Reddy, M. K., & Kaul, T. (2011). Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnology Letters, 33(8), 1689–1697.

Masuda, H., Aung, M. S., & Nishizawa, N. K. (2013). Iron biofortification of rice using different transgenic approaches. Rice, 6(1), 40.

Masuda, H., Ishimaru, Y., Aung, M.S., Kobayashi, T., Kakei, Y., Takahashi, M., Higuchi, K., Nakanishi, H..&Nishizawa, N.K. (2012). Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Scientific Reports, 2, 543.

Matsumoto, T., Lian, H.-L., Su, W.-A., Tanaka, D., Liu, C. W., Iwasaki, I., & Kitagawa, Y. (2009). Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice. Plant & Cell Physiology, 50(2), 216–229.

Mulangi, V., Phuntumart, V., Aouida, M., Ramotar, D., & Morris, P. (2012). Functional analysis of OsPUT1, a rice polyamine uptake transporter. Planta, 235(1), 1–11.

Nagamiya, K., Motohashi, T., Nakao, K., Prodhan, S. H., Hattori, E., Hirose, S., Ozawa, K., Ohkawa, Y., Takabe, T., Takabe, T., & Komamine, A. (2007). Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnology Reports, 1(1), 49–55.

Nishizawa, Y., Saruta, M., Nakazono, K., Nishio, Z., Soma, M., Yoshida, T., Nakajima, E., & Hibi, T. (2003). Characterization of transgenic rice plants over-expressing the stress-inducible beta- glucanase gene Gns1. Plant Molecular Biology, 51(1), 143–152.

Niu, X., Tang, W., Huang, W., Ren, G., Wang, Q., Luo, D., Xiao, Y., Yang, S., Wang, F., Lu, B,-R., Gao, F., Lu, T., & Liu, Y. (2008). RNAi-directed downregulation of OsBADH2 results in aroma (2- acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biology, 8, 100.

Oh, S.-J., Kwon, C.-W., Choi, D.-W., Song, S. I., & Kim, J.-K. (2007). Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnology Journal, 5(5), 646–656.

Park, S., Lee, D.-E., Jang, H., Byeon, Y., Kim, Y.-S., & Back, K. (2013). Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. Journal of Pineal Research, 54(3), 258–263.

Park, M.R., Tyagi, K., Baek, S.-H., Kim, Y.J., Rehman, S., & Yun, S. J. (2010). Agronomic characteristics of transgenic rice with enhanced phosphate uptake ability by over-expressed tobacco high affinity phosphate transporter. Pakistan Journal of Botany, 42(5), 3265–3273.

Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G.S., Khush, G.S., & Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 9971– 9975.

Pérez-Massot, E., Banakar, R., Gómez-Galera, S., Zorrilla-López, U., Sanahuja, G., Arjó, G., Miralpeix, B., Vamvaka, E., Farre´, G., Rivera, S.M., Dashevskaya, S., Berman, J.,Sabalza, M., Yuan, D., Bai, C., Bassie, L., Twyman, R.M., Capell, T., Christou, P.,& Zhu, C. (2013). The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes &Nutrition, 8(1), 29–41.

Qin, X., Liu, J. H., Zhao, W. S., Chen, X. J., Guo, Z. J., & Peng, Y. L. (2013). Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Molecular Plant Microbe Interactions,26(2), 227–239.

Qu, Y.D., Chen, Y.Q., Hou, Y.P., Huang, K.L., & Kang, D.M. (2011). Survey analysis of the cognition of GMO risk and safety among Chinese public. Journal of China Agricultural University, 16, 1-10.

Quilis, J., López-García, B., Meynard, D., Guiderdoni, E., & San Segundo, B. (2014). Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnology Journal, 12(3), 367–377.

Quilis, J., Penas, G.,Messeguer, J., Brugidou, C., & San Segundo, B. (2008). The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Molecular Plant-Microbe Interactions, 21(9), 1215-1231.

Ranathunge, K., El-Kereamy, A., Gidda, S., Bi, Y.-M., & Rothstein, S. J. (2014). AMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions. Journal of Experimental Botany, 65(4), 965–979.

Saeng-ngam, S., Takpirom, W., Buaboocha, T., & Chadchawan, S. (2012). The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice. Journal of Plant Biology, 55, 198-208.

Saika, H., Horita, J., Taguchi-Shiobara, F., Nonaka, S., Ayako, N.-Y., Iwakami, S., Hori, K., Matsumoto, T., Tanaka, T., Itoh, T., Yano, M., Kaku, K., Shimizu, T., & Toki, S. (2014). A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis. Plant Physiology, doi:10.1104/pp.113.231266

Shah, J. M., Raghupathy, V., & Veluthambi, K. (2009). Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnology Letters, 31(2), 239– 244.

Sakamoto, T. & Matsuoka, M. (2004). Generating high-yielding varieties by genetic manipulation of plant architecture. Current Opinion in Biotechnology, 15(2), 144-147.

Shen, X., Yuan, B., Liu, H., Li, X., Xu, C., & Wang, S. (2010). Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonasoryzae. The Plant Journal, 64(1), 86–99.

Shirasawa, K., Takabe, T., Takabe, T., & Kishitani, S. (2006). Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Annals of Botany, 98(3), 565–571.

Singh, R., & Jwa, N.-S. (2013). The rice MAPKK-MAPK interactome: the biological significance of MAPK components in hormone signal transduction. Plant Cell Reports, 32(6), 923–931.

Song, S.-Y., Chen, Y., Chen, J., Dai, X.-Y., & Zhang, W.-H. (2011). Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta, 234(2), 331–345.

Storozhenko, S., De Brouwer, V., Volckaert, M., Navarrete, O., Blancquaert, D., Zhang, G.-F., Lambert, W., & Van Der Straeten, D. (2007). Folate fortification of rice by metabolic engineering. Nature Biotechnology, 25(11), 1277–1279.

Takahashi, R., Ishimaru, Y., Senoura, T., Shimo, H., Ishikawa, S., Arao, T., Nakanishi, H., & Nishizawa, N. K. (2011). The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 62(14), 4843–4850.

Tabashnik, B. E., Brévault, T., & Carrière, Y. (2013). Insect resistance to Bt crops: lessons from the first billion acres. Nature Biotechnology, 31(6), 510–521.

Todaka, D., Nakashima, K., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice, 5(1), 6.

Tong, X., Qi, J., Zhu, X., Mao, B., Zeng, L., Wang, B., Li, Q., Zhou, G., Xu, X., Lou, Y., & He, Z. (2012). The rice hydroperoxidelyaseOsHPL3 functions in defense responses by modulating the oxylipin pathway. The Plant Journal,71(5), 763–775.

Ueno, D., Yamaji, N., Kono, I., Huang, C. F., Ando, T., Yano, M., & Ma, J. F. (2010). Gene limiting cadmium accumulation in rice. PNAS, 107(38), 16500–16505.

Ufaz, S., & Galili, G. (2008). Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiology, 147(3), 954–961.

Uraguchi, S., & Fujiwara, T. (2012). Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice, 5(1), 5.

Verma, D., Singla-Pareek, S. L., Rajagopal, D., Reddy, M. K., & Sopory, S. K. (2007). Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. Journal of Biosciences, 32(3), 621–628.

Verma, V., Sharma, S., Devi, S. V., Rajasubramaniam, S., &Dasgupta, I. (2012). Delay in virus accumulation and low virus transmission from transgenic rice plants expressing Rice tungro spherical virus RNA. Virus Genes, 45(2), 350–359.

vonCaemmerer, S., Quick, W. P., & Furbank, R. T. (2012). The development of C₄ rice: current progress and future challenges. Science, 336, 1671–1672.

Wakasa, K., Hasegawa, H., Nemoto, H., Matsuda, F., Miyazawa, H., Tozawa, Y., Morino, K., Komatsu, A., Yamada, T., Terakawa, T., & Miyagawa, H. (2006). High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. Journal of Experimental Botany, 57(12), 3069–3078.

Wang, Q., Guan, Y., Wu, Y., Chen, H., Chen, F., & Chu, C. (2008). Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 67(6), 589–602.

Wong, A.Y.-T., & Chan, A.W.-K. (2016). Genetically modified foods in China and the United States: A primer of regulation and intellectual property protection. Food Science and Human Wellness, DOI:10.1016/j.fshw.2016.03.002

Wu, H. R., Ding, Z. S., Li, L. B., Jing, Y. X., & Kuang, T. Y. (2006). Expression of the large isoform of ribulose-1,5-bisphosphate carboxylase/oxygenase activase gene driven by rbcS promoter in Oryza sativa enhances the photosynthetic capacity. Photosynthetica, 44(2), 208–214.

Wu, H. R., Li, L. B., Jing, Y. X., & Kuang, T. Y. (2007). Over-and anti-sense expressions of the large isoform of ribulose-1,5-bisphosphate carboxylase/oxygenase activase gene in Oryza sativa affect the photosynthetic capacity. Photosynthetica, 45(2).

Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., & Toriyama, K. (2009). Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports, 28(1), 21–30.

Xiao, B., Huang, Y., Tang, N., & Xiong, L. (2007). Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics, 115(1), 35–46.

Xiong, H., Li, J., Liu, P., Duan, J., Zhao, Y., Guo, X., Li, Y., Zhang., H., & Li, Z. (2014). Overexpression of OsMYB48-1, a novel MYB-Related transcription factor, enhances drought and salinity tolerance in rice. PloS One, 9(3), e92913.

Xu, M., Li, L., Fan, Y., Wan, J., & Wang, L. (2011). ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalty. Plant Cell Reports, 30(10), 1949–1957.

Yang, D.-L., Yang, Y., & He, Z. (2013). Roles of plant hormones and their interplay in rice immunity. Molecular Plant, 6(3), 675–685.

Yi, G. H., Lee, H. S., Sohn, J. K., & Kim, K. M. (2012). Physico-chemical properties of Arabidopsis Ca 2+ / H + antiporter transgenic rice grain. Bioscience Research, 9(1), 8–16.

Yoshihashi, T., Huong, N.T.T., & Inatomi, H. (2002). Precursors of 2-acetyl-1-pyrroline, a potent flavour compound of an aromatic rice variety. Journal Agriculture and Food Chemistry, 50, 2001–2004.

Yoshimura, S., Komatsu, M., Kaku, K., Hori, M., Ogawa, T., Muramoto, K., Kazama, T., Yukihiro, I., & Toriyama, K. (2012). Production of transgenic rice plants expressing Dioscoreabatatas tuber lectin 1 to confer resistance against brown planthopper. Plant Biotechnology, 29(5), 501–504.

Yu, H.-X., Liu, Q.-Q., Xu, L., Lu, M.-F., Cai, X.-L., Gong, Z.-Y., Yi, C.-D., Wang, Z.-Y., & Gu, M.-H. (2009). Breeding and field performance of novel soft and waxy transgenic rice lines without selectable markers. ActaAgronomicaSinica, 35(6), 967–973.

Yuan, Y., Zhong, S., Li, Q., Zhu, Z., Lou, Y., Wang, L., Wang, J., Wang, M., Li, Q., Yang, D., & He, Z. (2007). Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnology Journal, 5(2), 313–324.

Zhang, B., Chen, Q., Hua, C., Zhou, F., Zhou, Q., & Jiao, D. (2009). Response of gas exchange and water use efficiency to light intensity and temperature in transgenic rice expressing PEPC and PPDK genes. Agricultural Sciences in China, 8(11), 1312–1320.

Zhang, Y.-C., Yu, Y., Wang, C.-Y., Li, Z.-Y., Liu, Q., Xu, J., Liao, J.-Y., Wang, X.-J., Qu, L.-H., Chen, F., Xin, P., Yan, C., Chu, J., Li, H.-Q., & Chen, Y.-Q. (2013). Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotechnology, 31(9), 848–852.

Zhao, F.-Y., Zhang, X.-J., Li, P.-H., Zhao, Y.-X., & Zhang, H. (2006). Co-expression of the Suaeda salsaSsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Molecular Breeding, 17(4), 341–353.

Zou, J., Liu, C., & Chen, X. (2011). Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Reports, 30(12), 2155–2165.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Pertanika Journal of Scholarly Research Reviews, (e-ISSN: 2462-2028, ISSN: 2636-9141) published by Universiti Putra Malaysia Press